
7-1: ZERO AND NEGATIVE EXPONENTS

PROPERTY: ZERO AS AN EXPONENT

For every nonzero number *a*,

PROPERTY: NEGATIVE EXPONENT

For every nonzero number *a* and integer *n*,

Why only nonzero numbers? What's wrong with zero?

EXAMPLE 1: SIMPLIFYING A POWER

EXAMPLE 2: SIMPLIFYING AN EXPONENTIAL EXPRESSION

Simplify each expression.			
9. x^{-8}	10. xy^{-3}	11. $a^{-5}b$	12. $m^2 n^{-9}$

13.
$$\frac{1}{x^{-7}}$$
 14. $\frac{3}{a^{-4}}$ 15. $\frac{5}{d^{-3}}$ 16. $\frac{6}{r^{-5}s^{-1}}$

17.
$$3x^{-6}y^{-5}$$
18. $8a^{-3}b^2c^{-2}$ 19. $15s^{-9}t^{-1}$ 20. $-7p^{-5}q^{-3}r^2$

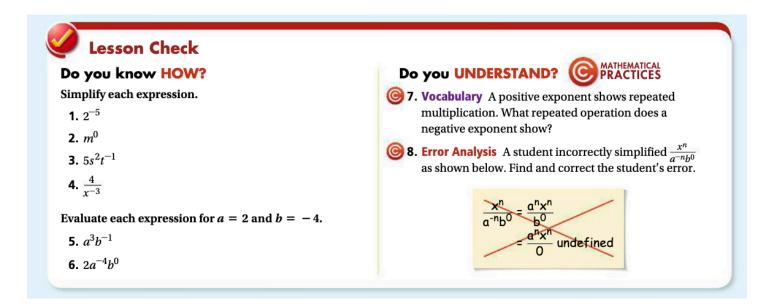
21.
$$\frac{d^{-4}}{e^{-7}}$$
 22. $\frac{3m^{-4}}{n^{-8}}$ 23. $\frac{6m^{-8}n}{p^{-1}}$ 24. $\frac{a^{-2}b^{-1}}{cd^{-3}}$

When you evaluate an exponential expression, you can write the expression with positive exponents before substituting values for the variables.

EXAMPLE 3: EVALUATING AN EXPONENTIAL EXPRESSION

25. Evaluate $3m^2t^{-2}$ for m = 2 and t = -3.

Evaluate each expression for a = -2 and b = 6.


26. b^{-2} 27. a^{-3} 28. $(-a)^{-4}$ 29. $-b^{-3}$

30. $4a^{-3}$ 31. $2b^{-2}$ 32. $(3a)^{-2}$ 33. $(-b)^{-2}$

34. $2a^{-1}b^{-2}$ 35. $-4a^{-2}b^{-3}$ 36. $3^{-2}a^{-2}b^{2}$ 37. $(3ab)^{-2}$

EXAMPLE 4: REAL-WORLD PROBLEM SOLVING

38. A population of marine bacteria doubles every hour under controlled laboratory conditions. The number of bacteria is modeled by the expression $1000 * 2^h$, where h is the number of hours after a scientist measures the population size. Evaluate the expression for h = 0 and h = -3. What does each value of the expression represent in the situation?

Name		7-1 Practice Worksheet	Period
Simplify each expr	ession.		
1. $-(2.57)^0$	2. $\frac{1}{2^0}$	33 ⁻⁴	4. 2 ⁻⁶
5. (-4) ⁻³	64 ⁻³	7. $\frac{5x^{-1}}{y^{-4}}$	8. $\frac{8}{2c^{-3}}$
9. $2^{-3}x^2y^0z^{-7}$	10. $9y^7t^{-11}$	11. $\frac{7s^0t^{-5}}{2^{-1}m^2}$	12. $2^3(5^0 - 6m^2)$
Evaluate each expre	ssion for $r = -3$ and $s = 5$.		
$(2 x)^{-2}$	1	02	2-433

13. $(2s)^{-2}$	14. $\frac{1}{r^{-4}s^2}$	15. $r^0 s^{-2}$	16. $2^{-4}r^3s^{-3}$
-----------------	---------------------------	------------------	-----------------------

17.
$$\frac{3r^{-2}s^{3}}{9r^{3}s^{-2}}$$
 18. s^{r}

Is the value of each expression positive or negative?

19. -2^2 20. $(-2)^2$ 21. 2^{-2} 22. $(-2)^{-3}$

23. Simplify $a^n \cdot a^{-n}$. What is the mathematical relationship between the two factors?

24. Which expressions equal $\frac{1}{4}$?I. 4^{-1} II. 2^{-2} III. -2^{-2} IV. $\frac{1}{2^2}$ a) I, II, and III onlyb) I and II onlyc) I, III, and IV onlyd) I, II, and IV only

25. Suppose you are the only person in your class who knows a certain story. After a minute you tell a classmate. Every minute after that, every student who knows the story tells another student (sometimes the person being told already will have heard it). In a class of 30 students, the expression $\frac{30}{1+29 \cdot 2^{-t}}$ predicts the approximate number of people who will have heard the story after *t* minutes.

About how many students will have heard your story after 2 minutes?

After 5 minutes?

After 10 minutes?